Uniform Linear Acceleration

```
Contents
    1. Uniform Linear Acceleration
        1. Accelerated Point Object Worldline
        2. Summary
    2. Gravitational Red Shift
        1. Accelerated Fixed Separation Worldline
        2. Summary
        3. Acceleration Event Horizon
    3. Accelerated Reference Frame
    4. Formulae
        1. Special Relativity (collinear speed addition)
        2. Hyperbolic Trignometric Functions
        3. Inverse Hyperbolic Trignometric Functions
        4. Hyperbolic Trigonmetric Identities
        5. Hyperbolic Trigonmetric Function Derivatives
    5. Software
```


Uniform Linear Acceleration

Uniform linear acceleration is the simplest gedanken experiment in general relativity.
Objects in uniform linear acceleration, at fixed height above and seen from below experience faster time passage. Objects in uniform linear acceleration, at fixed height below and seen from above experience slower time passage. 1930s radio operators using the new crystal radiotelephones between mountains and valleys, called this time distortion Einstein Effect.

Accelerated Point Object Worldline

Consider an object, initially at rest in an inertial reference frame, $\operatorname{ir} f_{0}$, that undergoes constant acceleration, A, for an infinitesimal interval, $d t_{0}$, after which it is at rest in an inertial reference frame, $i r f_{1}$, and a third inertial reference frame, $\operatorname{irf} f_{r}$, with speed, v, relative to $\operatorname{irf} f_{0}$.

Represent events as (time, distance, speed).

$i r f_{r}$	$i r f_{0}$	$\operatorname{irf_{1}}$	Notes
$(0, v)$	$(0,, 0)$	$\left(0,,-A d t_{1}\right)$	initial speed of object
$\left(d t_{r}, \frac{v+A d t_{0}}{\left.1+\frac{v A d t_{0}}{c^{2}}\right)}\right.$			
$\left(d t_{r}, v+d t_{0} A \frac{1-\frac{v^{2}}{c^{2}}}{1-\left(\frac{v A d t_{0}}{c^{2}}\right)^{2}}\right)$	$\left(d t_{0},, A d t_{0}\right)$	$\left(d t_{1},, 0\right)$	final speed of object

Determine observed speed, v, in $\operatorname{irf} f_{r}$, after constant acceleration in rest frame, $\operatorname{irf} f_{0}$, at time, t_{0}, in $\operatorname{irf} f_{0}$. To do so, integrate an infinite chain of inertial reference frames in infinitesimal motion, and integrate.

$\frac{d v}{d t_{0}}$	$=A\left(\frac{\sqrt{c^{2}-v^{2}}}{c}\right)^{2}$
$\frac{d v}{d t_{r}}$	$=A\left(\frac{\sqrt{c^{2}-v^{2}}}{c}\right)^{3}$

$v=c \tanh \left(\frac{A t_{0}}{c}\right)$	speed observed in rest frame
$v=c \frac{\frac{A t_{r}}{c}}{\sqrt{1+\left(\frac{A t_{r}}{c}\right)^{2}}}$	
$\frac{d t_{r}}{d t_{0}}=\frac{c}{\sqrt{c^{2}-v^{2}}}$	lorentz factor between rest and accelerated frame
$\frac{d t_{r}}{d t_{0}}=\cosh \left(\frac{A t_{0}}{c}\right)$	
$t_{r}=\frac{c}{A} \sinh \left(\frac{A t_{0}}{c}\right)$	accelerated frame time vs rest frame time
$t_{0}=\frac{c}{A} \ln \left(\frac{A t_{r}}{c}+\sqrt{\left(\frac{A t_{r}}{c}\right)^{2}+1}\right)$	
$x_{r}=\frac{c^{2}}{A}\left(\cosh \left(\frac{A t_{0}}{c}\right)-1\right)$	rest frame position
$x_{r}=\frac{c^{2}}{A}\left(\sqrt{1+\left(\frac{A t_{r}}{c}\right)^{2}}-1\right)$	

Summary

Point object uniform linear acceleration worldline follows.
(time, position, inertial speed)
accelerated frame: $\left(t_{0}, 0,0\right)$
accelerated frame: $\left(\frac{c}{A} \ln \left(\frac{A t_{r}}{c}+\sqrt{\left(\frac{A t_{r}}{c}\right)^{2}+1}\right), 0,0\right)$
inertial frame: $\left(\frac{c}{A} \sinh \left(\frac{A t_{0}}{c}\right), \frac{c^{2}}{A}\left(\cosh \left(\frac{A t_{0}}{c}\right)-1\right), c \tanh \left(\frac{A t_{0}}{c}\right)\right)$
inertial frame: $\left(t_{r}, \frac{c^{2}}{A}\left(\sqrt{1+\left(\frac{A t_{r}}{c}\right)^{2}}-1\right), c \frac{\frac{A t_{r}}{c}}{\sqrt{1+\left(\frac{A t_{r}}{c}\right)^{2}}}\right)$

Gravitational Red Shift

Gravitational Red Shift, know to radio operators since the 1930s as Einstein Effect, relates two accelerated reference frames.

Accelerated Fixed Separation Worldline

Consider the worldline of three point objects in linear uniform acceleration, e.g. two whiskers holding fixed station equidistant above and below a spacecraft. (Whiskers are unmanned ancillary vehicles that autonomously track a larger manned vehicle, submarine, automobile, aircraft, spacecraft, for sensing, navigation, diagnostics, ... We can imagine the whiskers are targets for the spacecraft radar and a pair of radar pings (photons), bounce back and forth between them.

The spacecraft (blue) worldline is point object uniform linear acceleration. At fixed distance, therefore timeinvariant, the whisker (red and green) worldlines are also point object uniform linear acceleration.

Two events including time, height, and speed, are sufficient to fit a point object uniform linear acceleration worldine. Two convenient events are (gold) echo at rest and echo after (yellow) ping at rest.

	Uniform Linear Acceleration Worldlines	green	whisker above	$\operatorname{arf}\left(, c T_{e}, 0\right)$
		blue	spacecraft	arf:(0,0$)$)
		red	whisker below	$\begin{aligned} & \operatorname{arf}\left(,-c T_{e}, 0\right. \\ &) \end{aligned}$
		yellow		reply/ech at accelerated time ..., $\begin{aligned} & -2 T_{e}, 0,2 T_{e} \\ & , \ldots \end{aligned}$
¢				$\begin{aligned} & \text { echoed } \ldots, \\ & -T_{e}, T_{e}, \ldots \end{aligned}$
		gold	radar ping	reply/echo at accelerated time $\ldots,-T_{e}$, T_{e}, \ldots
	Time ->			echoed .., $-2 T_{e}, 0,2 T_{e}$

Consider ping echoed at rest.

$t_{e}=\frac{c}{A_{0}} \sinh \left(\frac{A_{0} T_{e}}{c}\right)$	ping/reply inertial time and height
$h_{e}=\frac{c^{2}}{A_{0}}\left(\cosh \left(\frac{A_{0} T_{e}}{c}\right)-1\right)$	
$h 0_{b}=h_{e}-c t_{e}$	
$=\frac{c^{2}}{A_{0}}\left(\cosh \left(\frac{A_{0} T_{e}}{c}\right)-\sinh \left(\frac{A_{0} T_{e}}{c}\right)-1\right)$	
$=\frac{c^{2}}{A_{0}}\left(e^{-\frac{A_{0} T_{e}}{c}}-1\right)$	echo inertial height at rest
$h 0_{a}=\frac{c^{2}}{A_{0}}\left(e^{\frac{A_{0} T_{e}}{c}}-1\right)$	

Consider ping and reply at rest.

$c \tanh \left(\frac{A_{b} T_{b}}{c}\right)=c \tanh \left(\frac{A_{0} T_{e}}{c}\right)=c \tanh \left(\frac{A_{a} T_{a}}{c}\right)$	fixed separation implies same speed
$\frac{A_{b} T_{b}}{c}=\frac{A_{0} T_{e}}{c}=\frac{A_{a} T_{a}}{c}$	monotonic function implies same argument
$h 0_{b}+\frac{c^{2}}{A_{b}}\left(\cosh \left(\frac{A_{b} T_{b}}{c}\right)-1\right)=-c \frac{c}{A_{b}} \sinh \left(\frac{A_{b} T_{b}}{c}\right)$	
$0=\frac{c^{2}}{A_{0}}\left(e^{-\frac{A_{0} T_{e}}{c}}-1\right)+\frac{c^{2}}{A_{b}}\left(e^{\frac{A_{b} T_{b}}{c}}-1\right)$	ping from rest to whisker fixed below
$0=\frac{c^{2}}{A_{0}} e^{-\frac{A_{0} T_{e}}{c}}\left(1-e^{\frac{A_{0} T_{e}}{c}}\right)-\frac{c^{2}}{A_{b}}\left(1-e^{\frac{A_{b} T_{b}}{c}}\right)$	
$0=\frac{c^{2}}{A_{0}} e^{-\frac{A_{0} T_{e}}{c}}-\frac{c^{2}}{A_{b}}$	Divide by same function of same argument

$$
\begin{array}{|l|}
A_{b}=A_{0} e^{\frac{A_{0} c T_{e}}{c^{2}}} \\
A_{a}=A_{0} e^{-\frac{A_{0} c T_{e}}{c^{2}}} \\
\hline
\end{array}
$$

Summary

Summarizing, a line of point objects at equal accelerated height intervals experiencing uniform linear acceleration will observe
inertial rest height distributed below (green) at exponentially decreasing intervals, approaching an event horizon at $-\frac{c^{2}}{A_{0}}$
inertial rest height distributed above (red) at exponentially increasing intervals
inertial time scaled exponentially by accelerated height, slower (fewer ticks) below and faster (more ticks) above
inertial time scaled faster (more ticks) by hyperbolic cosine relative to accelerated time since rest.

Acceleration Event Horizon

As fixed separation increases as seen below from accelerating point, inertial height approaches a light cone with vertex $\frac{c^{2}}{A_{0}}$ below rest event.

Events below this light cone are invisible, below negative infinity accelerated height, as seen by accelerating point. This manifold is called an Event Horizon.

All unaccelerated points, seen from an accelerated point,

1. appear below
near infinite depth
initially frozen, unchanging
climbing near lightspeed
2. climb
quicken, begin to evolve slowly at increasing rate
slowing climb rate
3. peak
normal rate of change
momentarily rest
4. fall
evolve slowly at decreasing rate
increasing fall rate
5. disappear below
near infinite depth
finally frozen, unchanging
falling near lightspeed

Accelerated Reference Frame

An accelerated reference frame is characterized by frame acceleration, A_{0}, at its origin. At all other events in accelerated frame,
acceleration is in the same direction as frame acceleration
acceleration magnitude decreases exponentially $A(h)=e^{-\frac{A_{0} h}{c^{2}}}$ along radar height component parallel to frame acceleration
time rate relative to origin increases exponentially $\frac{d t}{d t_{0}}=e^{\frac{A_{0} h}{c^{2}}}$ along radar height component parallel to
frame acceleration
An accelerated reference frame sees a subset of an inertial reference frame. The accelerated reference frame space, and origin, map respectively to the inside of inertial reference frame Event Horizon cone and event. The event horizon cone axis passes through the accelerated frame origin in the direction of frame acceleration, and the cone tip is $\frac{c^{2}}{A_{0}}$ below the origin.

Formulae

Special Relativity (collinear speed addition)

$i r f_{r}$	$i r f_{0}$	$i r f_{1}$	Notes
c	c	c	Lightspeed is identical in all inertial reference frames
0	v_{a}	$\frac{v_{a}+v_{b}}{1+\frac{v_{a} v_{b}}{c^{2}}}$	speed of object observed in different frames
$-v_{a}$	0	v_{b}	
$-\frac{v_{a}+v_{b}}{1+\frac{v_{a} v_{b}}{c^{2}}}$	$-v_{b}$	0	
x_{r}	x_{0}	x_{1}	object position observed in different frames
$d t_{r}$	$d t_{0}$	$d t_{1}$	interval between events

$\frac{d t_{r}}{d t_{0}}=\frac{c}{\sqrt{c^{2}-v_{a}^{2}}}$	
$\frac{d t_{r}}{d t_{1}}=\frac{c}{\sqrt{c^{2}-v_{b}^{2}}}$	
$\frac{d t_{r}}{d t_{1}}=\frac{c}{\sqrt{c^{2}-\left(\frac{v_{a}+v_{b}}{\left.1+\frac{v_{a} v_{b}}{c^{2}}\right)^{2}}\right.}}$	

Hyperbolic Trignometric Functions

$\sinh (x)=\frac{e^{x}-e^{-x}}{2}$	hyperbolic sine
$\cosh (x)=\frac{e^{x}+e^{-x}}{2}$	hyperbolic cosine
$\tanh (x)=\frac{\sinh (x\}}{\cosh \{x\}}$	hyperbolic tangent

Inverse Hyperbolic Trignometric Functions

$a \sinh (x)=\ln \left(x+\sqrt{x^{2}+1}\right)$	hyperbolic antisine
$a \cosh (x)=-\ln \left(x-\sqrt{x^{2}-1}\right)$	hyperbolic anticosine
$a \tanh (x)=\ln \left(\sqrt{\frac{1+x}{1-x}}\right)$	hyperbolic antitangent

Hyperbolic Trigonmetric Identities

$1=\sec h(x)^{2}+\tanh (x)^{2}$	hyperbolic secant rule
$1=\cosh (x)^{2}-\sinh (x)^{2}$	hyperbolic sine rule
$e^{x}=\cosh (x)+\sinh (x)$	
$e^{-x}=\cosh (x)-\sinh (x)$	

Hyperbolic Trigonmetric Function Derivatives

$\frac{d}{d x} \sinh (x)=\cosh (x)$
$\frac{d}{d x} \cosh (x)=\sinh (x)$
$\frac{d}{d x} \tanh (x)=\frac{1}{(\cosh (x))^{2}}$

Software

Wuniform_linear_acceleration.wxmx algebra checker
凹uniform_linear_acceleration.bash diagram generator

